recsys_metrics_polars.recall#

Classes

RecallAtK(data_info)

Recall@k

class recsys_metrics_polars.recall.RecallAtK(data_info)[source]#

Bases: BaseMetricAtK

Recall@k

Recall@k = \dfrac{\text{Number of relevant items with rank} \leq k}{\min(k, \text{Total relevenat items for query})}

Parameters:

data_info (DataInfo) –

fit(true_interactions, recommendations)[source]#

Prepare data for metric computing

Parameters:
  • true_interactions (DataFrame) – true interactions

  • recommendations (DataFrame) – predicted interactions with scores for each pair query and item

Return type:

BaseRecMetric

compute_per_query(k, **kwargs)[source]#

Compute metric per query

Parameters:

k (int) –

avergae_over_queries(k, **kwargs)[source]#

Compute mean metric value over all queries

Parameters:

k (int) –